Standardization of Cold Mixed Asphalt in Europe

Dr. Bielz Thomas 28. – 29. listopadu 2017, České Budějovice

Motto: Asfaltové vozovky – bezpečná cesta k prosperitě

Overview

- 1. Introduction
- 2. Standardization in Austria / Germany
- 3. Testing methods in Austria
- 4. Reactive Cold Mixed Asphalt

1. Introduction

- No uniform standardization in Europe
- ➡ In Austria and in Germany there is already a draft of a standarization
- A lot of different Cold Mixed Asphalts in Europe
 - Bitumen emulsions
 - flux bitumen
 - reactive binders

4

AV KONFERENCE ASFALTOVÉ VOZOVKY 2017

2. Standardization in Austria / Germany (I)

<u>Austria</u>

- Valid just for Cold Mixed Asphalts
- Performance oriented test methods
- Different quality classes (declaration matrix)

Germany

- Valid for Cold and Hot Mixed Asphalts
- Standard test methods
- No declaration matrix

2. Standardization in Austria / Germany (II)

<u>Austria</u>

- Obligated declaration
- First test by an accredited laboratory
- Factury production control
- Once a year a control by external auditor

<u>Germany</u>

- No obligated declaration
- Fist test by an accredited laboratory
- Factury production control
- Once per year a control by external auditor
- Site job regulation
- Claims of the customer

2. Standardization in Austria / Germany – Differentiation of Cold Mixed Asphalts

Presumably it will be differentiated between following Cold Mixed Asphalts

<u>Austria</u>	Germany	
♦ KMG-DD	➡ KMG-DSK	➡ HMG
➡ KMG-FL	➡ KMG-F	➡ WMG
➡ KMG-LM	➡ KMG-L	
♦ KMG-RE	➡ KMG-R	
	➡ KMG-E	

2. Standardization in Austria – Characteristic Values (I)

Technical

- Aggregate classification (delivery agreement)
- Binder content
- Marshallstability at 60°C
- Loss of aggregates at -20°C (Cantabric test)
- Tensile splitting strength after storage in water at 25 °C
- Increase of binder viscosity at 60°C

2. Standardization in Austria – Characteristic Values (II)

Application-specific

- Void content
- Flowability at 0°C
- Shelf life
- Workability

2. Standardization in Austria – Characteristic Values (III)

Environmental

- Content of renewable raw materials
- Content of volatile organic carbon (VOC)

2. Standardization in Germany – Characteristic Values

- Grain size distribution
- Binder content
- Softening point Ring and Ball of the recovered binder
- Volume density
- Void content
- Depth of stamp penetration
- Marshallstability at 60°C

3. Standard test methods in Austria – binder content

Extraction of binder by a suitable solvent

$$BM(\%) = \frac{EW_{tr} - (AW_{tr} + H_2O)}{EW_{tr}} * 100$$

EW_{tr} dry weigth before extraction

AW_{tr} dry weigth after extraction

H₂O weight of water

3. Standard test methods in Austria – Marshall stability

- Storage of Marshall body in water bath at 60°C
- Force and deformation are recorded
- Marshall stability / Flowing value

- 3. Standard test methods in Austria Cantabric test
- Determination of grain loss at -20 °C
- 300 Rounds with 30-33 rounds per minute
- Weigh Marshall body before and afer the test

$$PL = 100 * \frac{W1 - W2}{W1}$$

PL Grainloss (%) W1 ... Weight before test (g) W2 ... Weight after test (g)

3. Standard test methods in Austria – Tensile splitting strength

- Marshall body is placed into the Marshall press
- The pressure is raised till the body brakes
- Tensile splitting strength is calculated

$$eta_{SZ}=rac{2F}{dl\pi}$$

- F Force when the body brakes
- d ... diameter of the body
- I... length of the body

3. Standard test methods in Austria – Void Content

- Determine particle density
- Determine bulk density
- ♦ Ratio → void content

$$H = \frac{\rho_R - \rho_A}{\rho_R} * 100$$

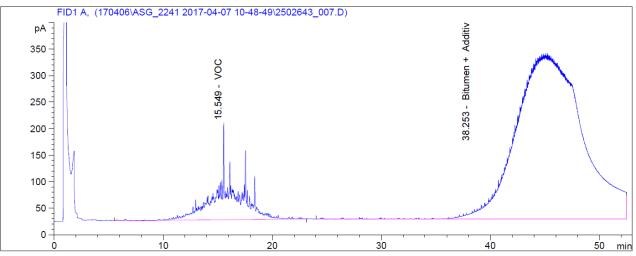
HVoid content ρ_R ...raw density ρ_A ...bulk density

3. Standard test methods in Austria – Void Content

Measurement at 0 °C or 7 °C

After 60 seconds a stamp (300 g) is put on top

After 4 minutes another 500 g is put on top


3. Standard test methods in Austria – Volatile organic carbon content

- Testing method: GC with FID
- ➡ Solvent: CS₂

Determination of VOC`s up to 300 °C

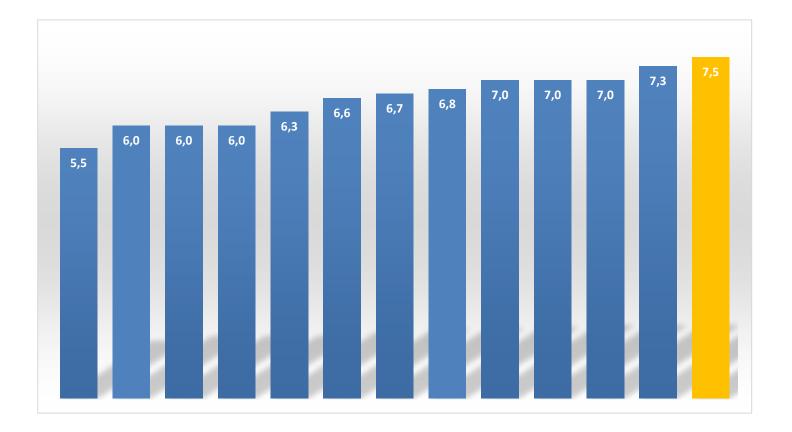
(related to the binder)

4. Reactive Cold Mixed Asphalt

- New technology
- Reactive chemical hardening reaction
- Fast and economical repair-method

4. Reactive Cold Mixed Asphalt - Rephalt

- Chemical hardening reaction with water
- Compaction of the Rephalt
- Hardens within one hour
- No difference in performance to hot mixed asphalt



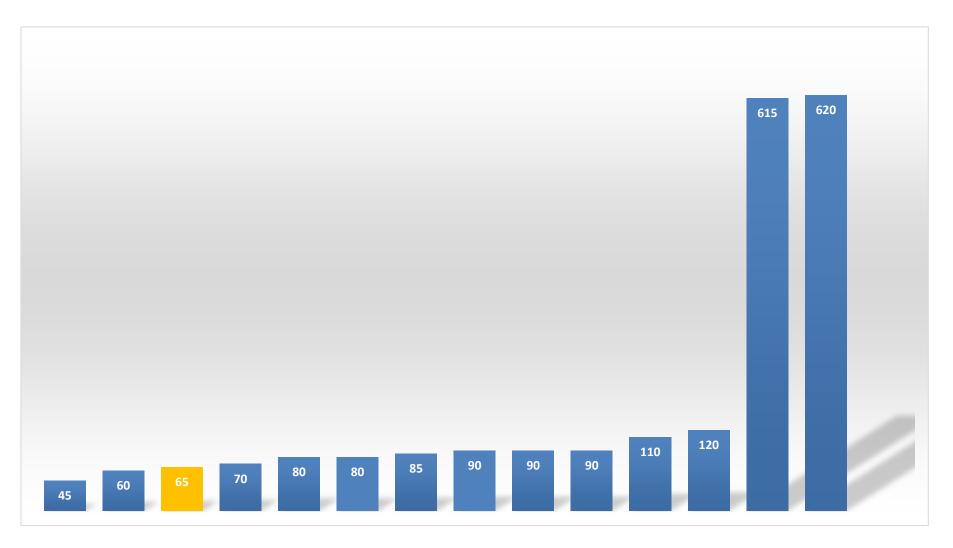
4. Reactive Cold Mixed Asphalt - Rephalt

- High binder content (extraction)
- Low void content (densities)
- Good flowability (flowability test)
- High Marshall stability (Marshall test)
- Low abrasion (catabric test)
- ♦ 0 % of volatile organic carbon (environment)

4. Rephalt – Binder content [M-%]

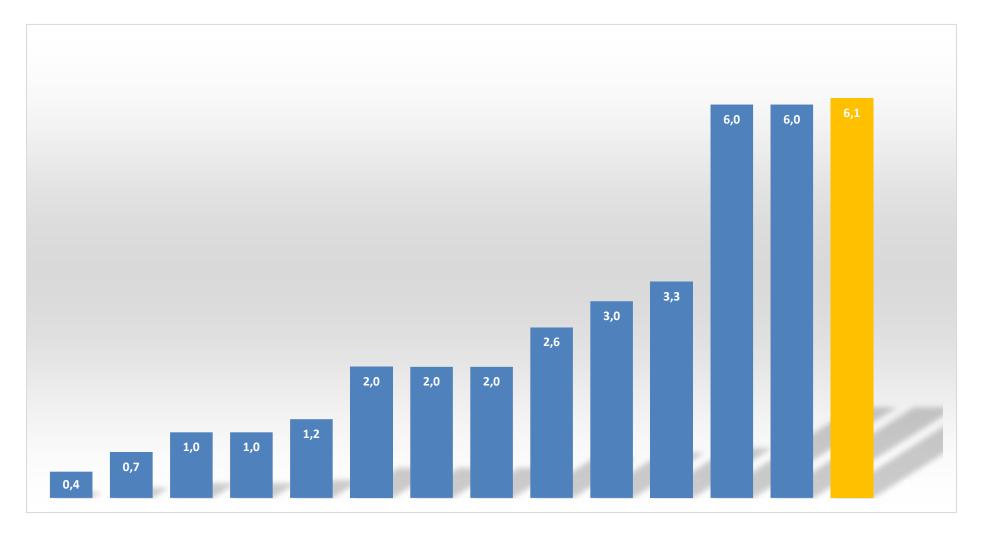
4. Reactive Cold Mixed Asphalt - Rephalt

- High binder content (extraction)
- Low void content (densities)
- Good flowability (flowability test)
- High Marshall stability (Marshall test)
- Low abrasion (catabric test)
- ♦ 0 % of volatile organic carbon (environment)


4. Rephalt – Void content [V-%]

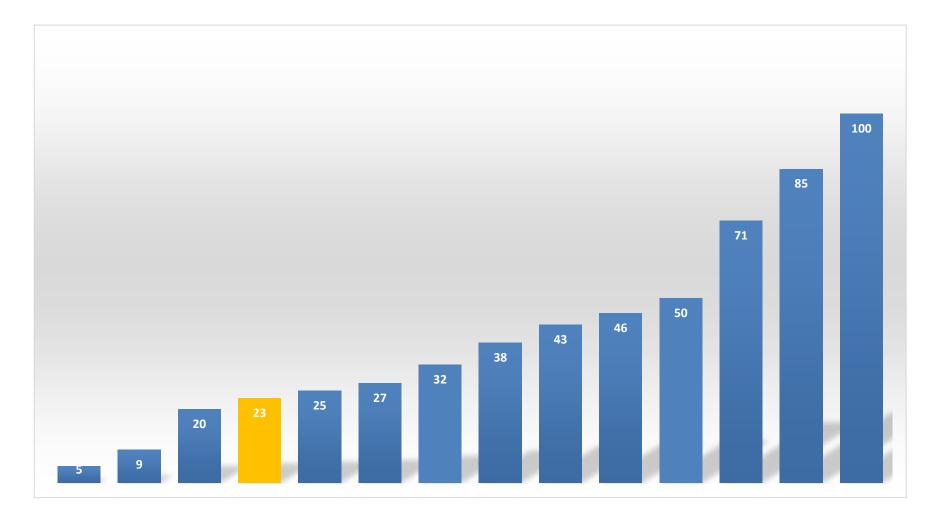
4. Reactive Cold Mixed Asphalt - Rephalt

- High binder content (extraction)
- Low void content (densities)
- Good flowability (flowability test)
- High Marshall stability (Marshall test)
- Low abrasion (catabric test)
- ♦ 0 % of volatile organic carbon (environment)


4. Rephalt – Flowability [s]

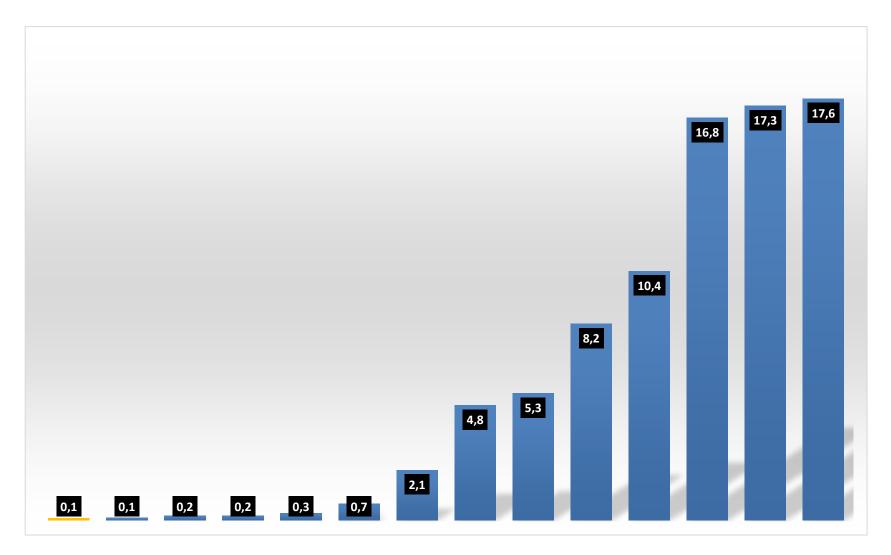
4. Reactive Cold Mixed Asphalt - Rephalt

- High binder content (extraction)
- Low void content (densities)
- Good flowability (flowability test)
- High Marshall stability (Marshall test)
- Low abrasion (catabric test)
- ♦ 0 % of volatile organic carbon (environment)


4. Rephalt – Marshall stability [kN]

4. Reactive Cold Mixed Asphalt - Rephalt

- High binder content (extraction)
- Low void content (densities)
- Good flowability (flowability test)
- High Marshall stability (Marshall test)
- Low abrasion (catabric test)
- ♦ 0 % of volatile organic carbon (environment)


4. Rephalt – Abrasion [M-%]

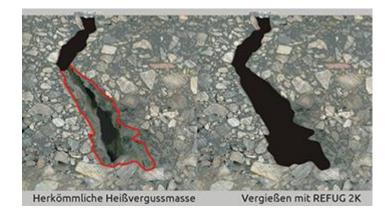
4. Reactive Cold Mixed Asphalt - Rephalt

- High binder content (extraction)
- Low void content (densities)
- Good flowability (flowability test)
- High Marshall stability (Marshall test)
- Low abrasion (catabric test)
- 0 % of volatile organic carbon (environment)

4. Rephalt – Volatile organic carbon content [M-% of the binder]

4. Reactive products of Vialit – Road repair

Rephalt


Repatch

4. Reactive products of Vialit – Joint sealing

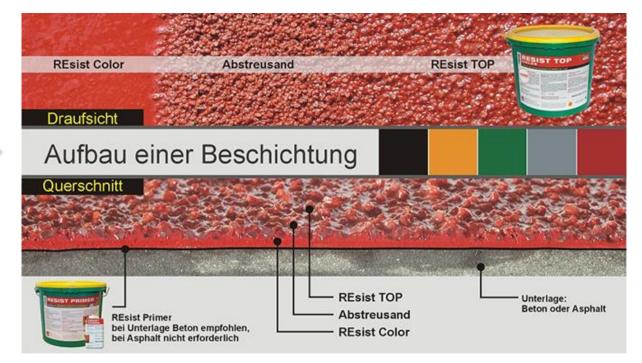
• Refug 100

Refug 2 K

4. Reactive products of Vialit – Sealing buildings

Rebond KMB

4. Reactive products of Vialit - Coatings


• Resist 2 K

Resist Top Color

Resist Top Coat

Thank you for your attention

