

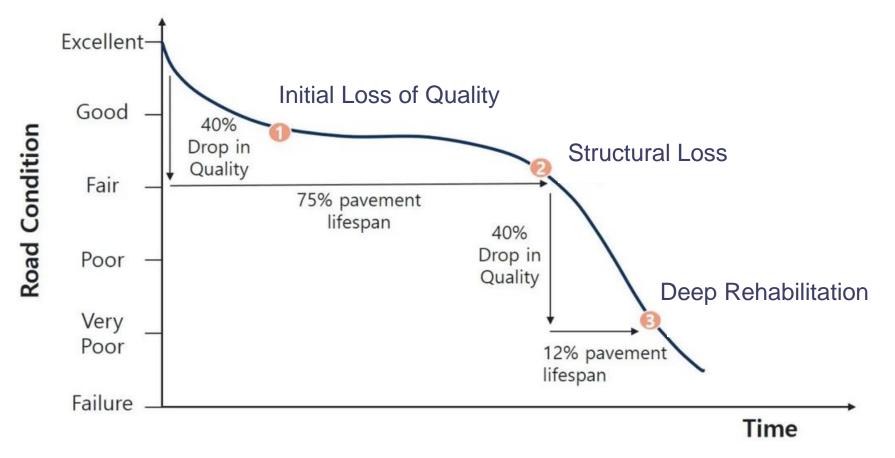
Grave Emulsion: a Performing Tool for Road Maintenance

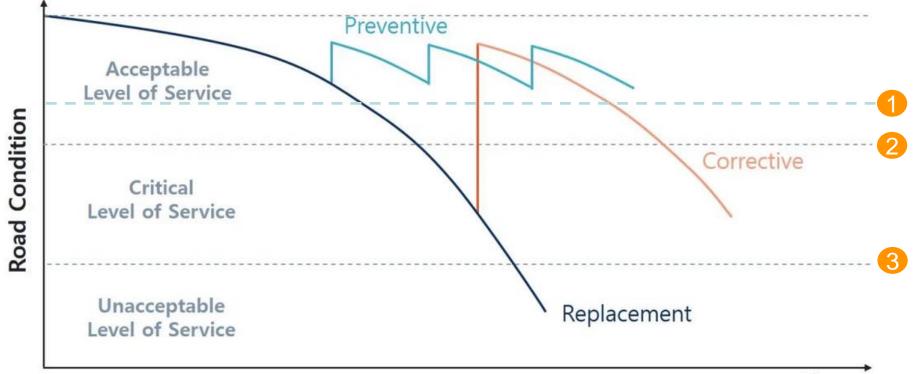
Bruno Marcant and Thomas Zamaron, ValoChem

24 November 2021, České Budějovice

Cold Techniques are the Methods of Choice for Road Preservation and Maintenance

I- Road Maintenance: Cold Techniques




Road Condition Evolution

Maintenance Strategies

4

Maintenance Optimization

- 1. Quality
- 2. Environmental footprint
 - ➡ CO₂ release
 - Raw material sustainability
 - Health and safety of workers
- 3. User Satisfaction
 - Road smoothness and comfort
 - Delays linked to road maintenance/rehabilitation
- 4. Cost

Cold laying techniques are often the optimized choice

Maintenance Techniques

Fog Seal Crack Seal Scrub Seal Chip Seal Slurry Seal Microsurfacing Cape Seal **Grave Emulsion** Thin WMA/HMA

Grave Emulsion Cold in-Place Recycling Hot in-Place Recycling CMA WMA/HMA

Full Depth Reclamation

II – Grave Emulsion

What is Grave Emulsion (GE) ?

GE is a coating emulsion technique involving a dispersion of

- a slow breaking asphalt emulsion
- a grave (aggregate regular distribution from fine to large)
- at ambient temperature

Typical formulation example

Aggregates 0/14 mm	90%
Emulsion	7%
Water	3%

Limited Manufacturing Equipment

Limited Laying Equipment

Weather conditions : dry , $T^{\circ}C > 10$

Compaction reduces the % of voids, accelerates emulsion breaking and mix setting

Expected Performance

The addition of asphalt emulsion brings permanent cohesion without impacting the internal friction between aggregates that is taking place in a grave

Thus GE is expected to provide:

- Rutting resistance
- Bottom to top cracking prevention

Other Technical Characteristics


- Workability
- Adaptability to deformations
- Good longitudinal joints
- Storability
- Immediate traffic reopening after lay-down

In which cases ?

Low to Medium Traffic Roads

- New road bases
- Maintenance technique : reinforcement or reprofiling of aged intermediate/top layer

GE Categories

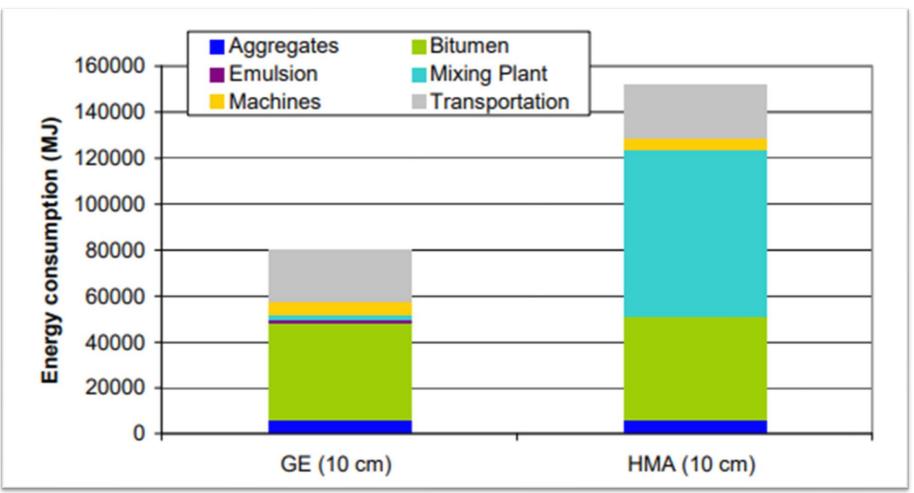
	Grave emulsion	Grading (mm)	Thicknesses of application (cm)	Use
		0/6	0 to 4	Reprofiling or local
Reprofiling	Type R	0/10	0 to 6	repair work
		10/14	3 to 8	
		0/10	5 to 10	Sub-base layer as
Structuration	Type S	0/14	6 to 12	part of new or road reinforcement jobs
		0/20	8 to 15	

GE Drivers vs. HMA/WMA

Sustainability

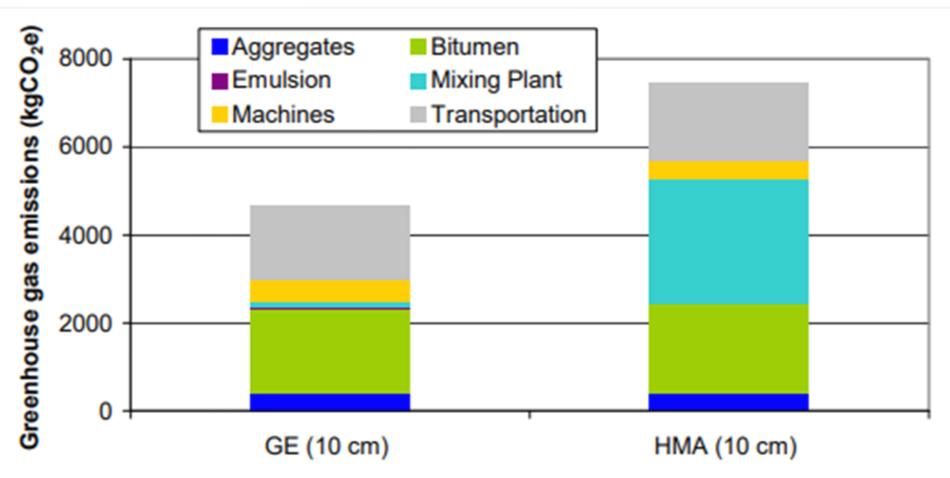
- Smaller quantity of raw materials (reprofiling down to zero)
- 100% RAP possible

Lower Environmental Impact


- Ambient temperature
- Simple mobile manufacturing plants close to job site

Economics

- Limited equipment
- Low energy
- Potential 100% RAP use



Energy Consumption

Green House Gas Emissions

17

Other GE Advantages vs. HMA/WMA

- Simple manufacturing equipment : no heating, no filter
- No ageing during mixing
- 3+ hours of transport are no issue
- Storable version can be layed down right away after several weeks storage
- Finisher is not an obligation, grader is usually enough
- Like WMA : no exposition of operators to fumes and aerosols

GE Limitations

Major success in France

- Applied since 60+ years
- 1.2 M Tons of GE / year

Because limitations are taken into account

- Curing is required after application (water in porosity vs. air)
- Post-treatment after application
 - Wear course likely applied on the top to withstand tire shear forces (surface dressing or micro)
- Performance achievement requires cautious lab formulation

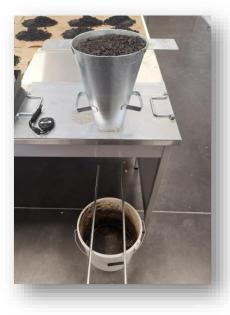
Lab formulation to reach specifications

Good coating : Visual

→ no uncoated aggregate

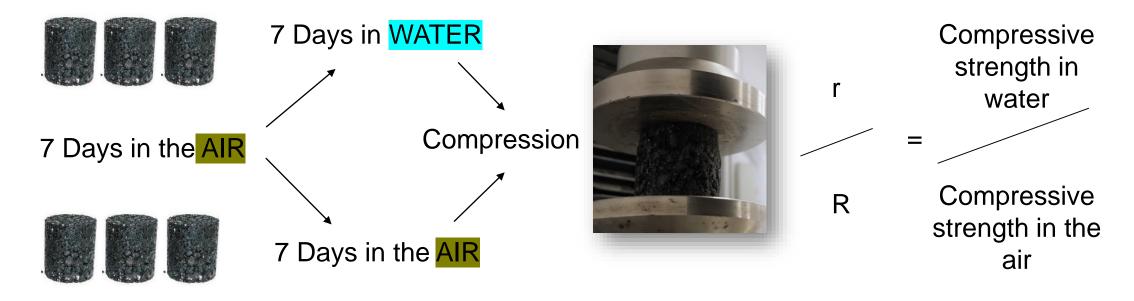
Good workability : Cold Mix Flow Workability (CMFW) → smooth application in the field

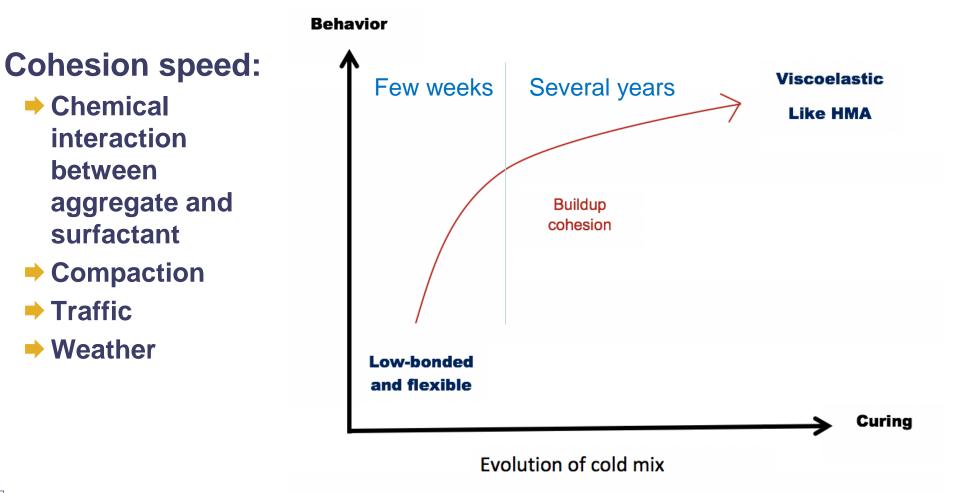
→ good water resistance


Coating and Workability

Coating	Class	% cover of surface	Coating quality
	E1	> 97%	Full
	E2	90 to 96%	Very Good
	E3	75 to 89 %	Medium
	E4	< 75 %	Bad

Workability (CMFW) → < 50 s for handwork


< 200 s for paver job</p>


Duriez Test

The closer r/R to 1, the better the water resistance

GE is an evolving material vs. HMA/WMA

III – New Emulsifier for Grave Emulsion and Cold Mix: ValoSurf[™] GCM

State of the Art

	Lignin emulsifier	Polyamine emulsifier
Coating	+++	+
Workability	+++	++
Water resistance	+	+++

➡ Need for development of an emulsifier that matches all 3 specifications

ValoSurf[™] GCM

	Valosurf GCM	Valosurf GCM	Lignin based emulsifier	Polyamine based emulsifier	<i>Specification for a reprofiling GE</i>
Coating	Full	Full	Full	Bad	
Dosage (kg/t)	18	14	14		
R (MPa)	5.0	4.5	4.4	/	> 1.5
Duriez r/R (18°C)	0.77	0.60	0.33	/	> 0.55
Binder content (%)	3.9	3.9	3.9		
Aggroge	t = 0/10			Ļ	

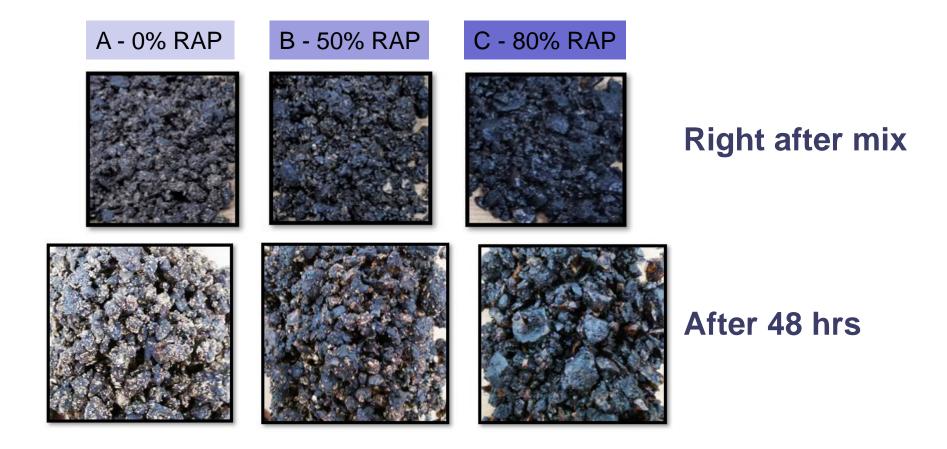
Aggregate 0/10 : 100% Schist (Shale)

Influence of Aggregate

	Schist	Limestone
0/4 (parts)	35	50
2/6 (parts)	35	50
10/14 (parts)	30	9
Water (parts)		2
Coating	E1 Full	E2 Dull Black
Dosage (kg/t)	14	14
R (MPa)	4.5	5.6
Duriez r/R (18°C)	0.60	0.30
CMFW (s)	/	40
Binder content (%)	3,9	4,6

➡Aggregate/Emulsifier interaction is key

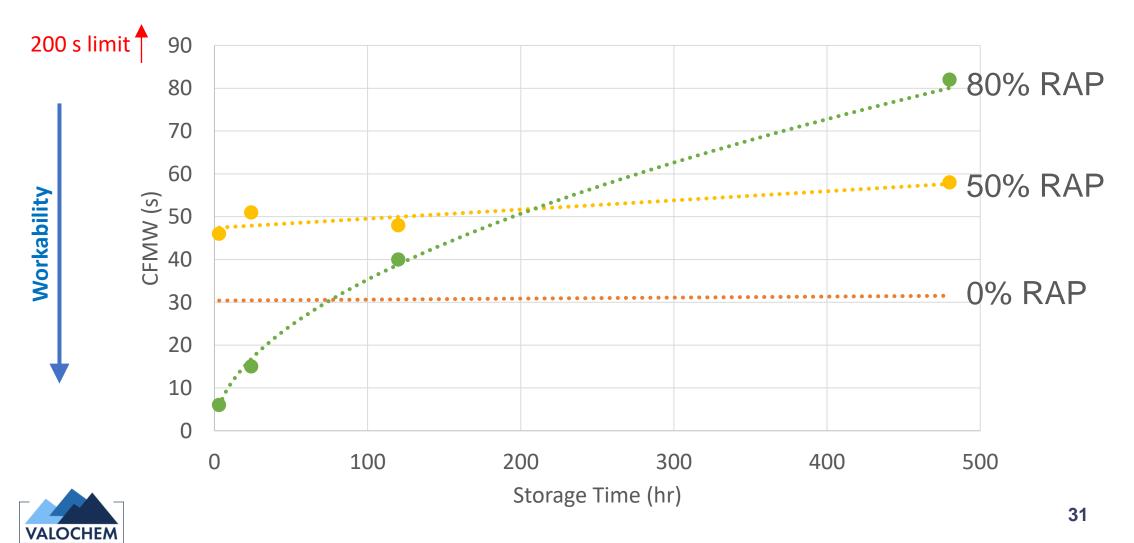
Impact of RAP Incorporation


	A - 0%	B – 50 %	C – 80%
0/4 limestone (parts)	50	20	
2/6 limestone (parts)	50	30	20
RAP 0/10 (parts)	0	50	80
Water (parts)	2	2	2
Emulsion (parts) GCM	8	6	4
Binder content (%)	4.6	5.7	6.0
Coating	E2 Dull black	E2 Black	E1 Black and Shiny
CMFW (s)	40	46	6
R (MPa)	5.6	6.4	6.2
Duriez r/R (18°C)	0.30	0.50	0.66

➡Coating increases with %RAP

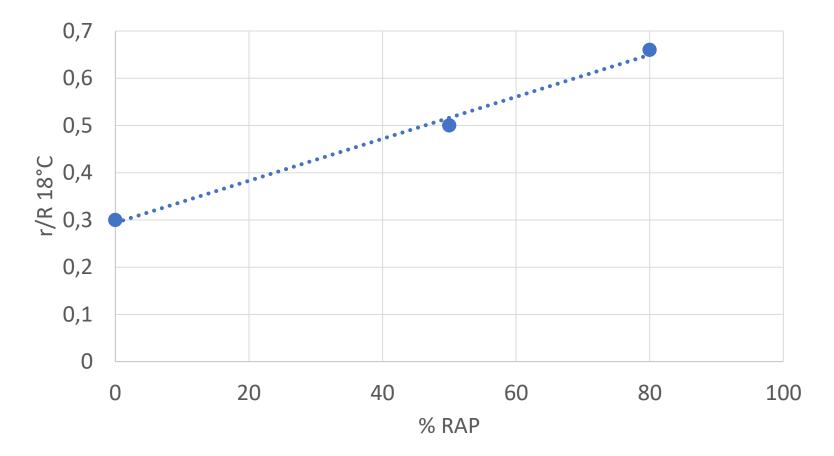
Coating Improvement with RAP

Impact of RAP Incorporation


	A - 0%	B – 50 %	C – 80%
0/4 limestone (parts)	50	20	
2/6 limestone (parts)	50	30	20
RAP 0/10 (parts)	0	50	80
Water (parts)	2	2	2
Emulsion (parts) GCM	8	6	4
Binder content (%)	4.6	5.7	6.0
Coating	E2 Dull black	E2 Black	E1 Black and Shiny
CMFW (s)	40	46	6
R (MPa)	5.6	6.4	6.2
Duriez r/R (18°C)	0.30	0.50	0.66

➡CMFW is very good

CMFW Change with RAP


Impact of RAP Incorporation

	A - 0%	B – 50 %	C – 80%
0/4 limestone (parts)	50	20	
2/6 limestone (parts)	50	30	20
RAP 0/10 (parts)	0	50	80
Water (parts)	2	2	2
Emulsion (parts) GCM	8	6	4
Binder content (%)	4.6	5.7	6.0
Coating	E2 Dull black	E2 Black	E1 Black and Shiny
CMFW (s)	40	46	6
R (MPa)	5.6	6.4	6.2
Duriez r/R (18°C)	0.30	0.50	0.66

➡Duriez increases with %RAP

Cohesion Improvement with RAP

+25% RAP \simeq 0.1 Duriez

Characteristics of Wearing Course CMA

vs. GE

- Higher residual binder
- → Higher Duriez water resistance $r/R = 0.55 \rightarrow 0.70$

vs. HMA/WMA

- High deflection withstanding
- High reprofiling capacity
- High rutting resistance with good flexibility

Impact of RAP Incorporation

Aggregate 0/10 : 100% Schist

Emulsifier : ValoSurf GCM

	F1	F2	F3		
0/4 (parts)	27	15	12		
4/6 (parts)	28	25	15		
6/10 (parts)	35	30	23		
RAP (parts)	10	30	50		
Water (parts)	0	0	0		
Emulsion (parts)	8,3	7,3	6,3		
Binder content (%)	5,5	5,9	6,3		
Coating	E1 Black and Shiny	E1 Black and Shiny	E1 Black and Shiny		

Duriez: 35°C vs. 18°C

35°C testing may be more relevant for top layer, since under curing the mix may evolve from fresh water sensitive state to a more resistant state

	F1	F2	Specs
RAP (parts)	10	30	
Binder content (%)	5,5	5,9	
Coating (%)	E1 Black and Shiny	E1 Black and Shiny	
CMFW 3h (s CA) 24h (s CA)	31 121	120 135	< 200 < 200
Duriez 18°C R18 (Mpa) r18/R18	3.8 0.65	8.5 0.61	> 2.5 > 0.7
Duriez 35°C R35 (Mpa) r35/R35	4.9 0.81	/	> 0.8

IV – Conclusions

- Optimization of the maintenance/rehabilitation strategy translates into a better balance between environmental footprint, user satisfaction and overal cost
- GE is a valuable cold maintenance technique for reprofiling and restructuring (before FDR)
- A new emulsifier for Grave Emulsion and Cold Mix provides a better balance between coating and adhesion
- GE performance improves with RAP incorporation and allows a significant reduction of emulsion content
- Small content of RAP up to 30% can be used as well on Wearing Course CMA. Higher amounts may require rejuvenator and more emulsion compared to GE

